Differences in the regulation of RyR2 from human, sheep, and rat by Ca2+ and Mg2+ in the cytoplasm and in the lumen of the sarcoplasmic reticulum
نویسندگان
چکیده
Regulation of the cardiac ryanodine receptor (RyR2) by intracellular Ca(2+) and Mg(2+) plays a key role in determining cardiac contraction and rhythmicity, but their role in regulating the human RyR2 remains poorly defined. The Ca(2+)- and Mg(2+)-dependent regulation of human RyR2 was recorded in artificial lipid bilayers in the presence of 2 mM ATP and compared with that in two commonly used animal models for RyR2 function (rat and sheep). Human RyR2 displayed cytoplasmic Ca(2+) activation (K(a) = 4 µM) and inhibition by cytoplasmic Mg(2+) (K(i) = 10 µM at 100 nM Ca(2+)) that was similar to RyR2 from rat and sheep obtained under the same experimental conditions. However, in the presence of 0.1 mM Ca(2+), RyR2s from human were 3.5-fold less sensitive to cytoplasmic Mg(2+) inhibition than those from sheep and rat. The K(a) values for luminal Ca(2+) activation were similar in the three species (35 µM for human, 12 µM for sheep, and 10 µM for rat). From the relationship between open probability and luminal [Ca(2+)], the peak open probability for the human RyR2 was approximately the same as that for sheep, and both were ~10-fold greater than that for rat RyR2. Human RyR2 also showed the same sensitivity to luminal Mg(2+) as that from sheep, whereas rat RyR2 was 10-fold more sensitive. In all species, modulation of RyR2 gating by luminal Ca(2+) and Mg(2+) only occurred when cytoplasmic [Ca(2+)] was <3 µM. The activation response of RyR2 to luminal and cytoplasmic Ca(2+) was strongly dependent on the Mg(2+) concentration. Addition of physiological levels (1 mM) of Mg(2+) raised the K(a) for cytoplasmic Ca(2+) to 30 µM (human and sheep) or 90 µM (rat) and raised the K(a) for luminal Ca(2+) to ~1 mM in all species. This is the first report of the regulation by Ca(2+) and Mg(2+) of native RyR2 receptor activity from healthy human hearts.
منابع مشابه
Ultrastructural localization of calsequestrin in adult rat atrial and ventricular muscle cells
The distribution of calsequestrin in rat atrial and ventricular myocardial cells was determined by indirect immunocolloidal gold labeling of ultrathin frozen sections. The results presented show that calsequestrin is confined to the sarcoplasmic reticulum where it is localized in the lumen of the peripheral and the interior junctional sarcoplasmic reticulum as well as in the lumen of the corbul...
متن کاملCa2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
1. In muscle, intracellular calcium concentration, hence skeletal muscle force and cardiac output, is regulated by uptake and release of calcium from the sarcoplasmic reticulum. The ryanodine receptor (RyR) forms the calcium release channel in the sarcoplasmic reticulum. 2. The free [Ca2+] in the sarcoplasmic reticulum regulates the excitability of this store by stimulating the Ca2+ release cha...
متن کاملThe Effect of Verapamil Administred before the Reperfusion Insult in Isolated Preconditioned Rat Heart on the Microsomal ATPase and Mitochondrial Enzyme Activities
Background: Calcium overload and free radical mediated damage in the mitochondria is the most important pathological changes associated with myocardial ischemic-reperfusion injury. The verapamil post-treatment has been previously reported to prevent reperfusion-induced myocardial injury but functional recovery may be delayed due to the drug's inherent direct myocardial depression effect. In the...
متن کاملProtein protein interactions between triadin and calsequestrin are involved in modulation of sarcoplasmic reticulum calcium release in cardiac myocytes.
In cardiac muscle, intracellular Ca2+ release is controlled by a number of proteins including the ryanodine receptor (RyR2), calsequestrin (CASQ2), triadin-1 (Trd) and junctin (Jn) which form a complex in the junctional sarcoplasmic reticulum (SR) membrane. Within this complex, Trd appears to link CASQ2 to RyR2 although the functional significance of this interaction is unclear. In this study, ...
متن کاملExtensive Ca2+ leak through K4750Q cardiac ryanodine receptors caused by cytosolic and luminal Ca2+ hypersensitivity
Various ryanodine receptor 2 (RyR2) point mutations cause catecholamine-induced polymorphic ventricular tachycardia (CPVT), a life-threatening arrhythmia evoked by diastolic intracellular Ca2+ release dysfunction. These mutations occur in essential regions of RyR2 that regulate Ca2+ release. The molecular dysfunction caused by CPVT-associated RyR2 mutations as well as the functional consequence...
متن کامل